
Towards Federated Referatories

Erik Wilde
ETH Zürich (Swiss Federal Institute of Technology)

Available online at http://dret.net/netdret/publications#wil03j

Abstract

Metadata usage often depends on schemas for metadata, which are important to convey the meaning
of the metadata. We propose an architecture where users can extend the schema used by a system for
managing referential metadata. Users can plugin new schemas and install custom filters for exporting
metadata, so that users are not forced to limit their metadata to a fixed schema. The goal of this
architecture is to provide users with a system that helps them managing their referatory, enables them
with powerful tools to adapt the tool to their metadata, and still makes it possible to collect the
metadata of several users in a central storage and exploit the common facets of the metadata. Our
system is based on a specialized schema language, which has been built on top of the XML schema
languages XML Schema and Schematron.

1 Introduction

In an academic institution such as the ETH Zürich, many scientific employees maintain their own bibli-
ographies. For many of them, this is simply a matter of convenience, because centralized systems usually
force them to conform to formats and limitations that they are not comfortable with. The downside of
this situation is that there is no single and central way to manage all bibliographic information. This
is a disadvantage for the employees, because they have to develop and maintain their own “systems”
(which all too often are strategies how to handle the information with rather poor tools), as well as a
disadvantage for the institution, because there is no way to combine and exploit the wealth of information
maintained by the employees. Since we do not want to limit our view to bibliographic information only,
we generalize this towards the notion of metadata describing referenceable resources, and the rest of the
paper will use the term “referatory” instead of “bibliography”.

It is important to notice that our system is not designed for resource storage or retrieval, it is exclusively
designed for handling well-structured metadata, which probably has been generated manually.

A typical example for per-user referatories are BibTEX [11] files. BibTEX defines a number of standard
fields, but also accepts additional fields, which may be processed by specialized BibTEX styles [12], or may
never be used as part BibTEX processing, but are still relevant to capture metadata about the resource.
Figure 1 shows an example of a BibTEX entry, which uses a standard entry type (misc) and a number of
standard fields, as well two non-standard fields (uri and topic).

In this example, the uri field simply contains the resource’s URI, while the topic field contains
structured information. It contains a list of weighted references to a topic map of Web technologies1, thus
categorizing the resource in relation to these topics. Fields like these, which have been invented by a single

1Available online at http://wildesweb.com/glossary/.

1

http://dret.net/netdret/
http://dret.net/netdret/publications#wil03j
http://wildesweb.com/glossary/

@misc{xmlns10,
author = "Tim Bray and Dave Hollander and Andrew Layman",
title = "Namespaces in XML",
howpublished = "W3C, REC-xml-names-19990114",
month = "January",
year = 1999,
uri = "http://www.w3.org/TR/1999/REC-xml-names-19990114",
topic = "xml[0.8] xmlns[1]" }

Figure 1: BibTEX Example

user or a small user group, often contain very valuable information for these users, but are unlikely to be
of any relevance for the vast majority of BibTEX users. Thus, if the goal is to build a system supporting
users in their maintenance of their references, it is essential to provide support for this kind of specialized
resource metadata.

This is what is referred to in the title with the term “federated”. The goal is to build a system
that enables users to keep their personal style of creating and maintaining a referatory, while on the
other hand provides features that exploits the joining of personal referatories. For example, a user might
benefit from storing the entry shown in Figure 1 because the system will provide him with a Web-based
interface, automatic backup, and (as will be shown later) very flexible ways of exporting the data. On the
other hand, other users might benefit from the availability of this entry because they might have simply
searched for documents of one of the authors, or because they find the resource’s URI and recognize it as
a simple way to get the resource.

To summarize, the goal is to design a system that on the one hand implements a central referatory,
while on the other hand providing users with the opportunity to still handle their references as “their
property”, by granting them access rights, giving them the opportunity to use proprietary extensions, and
providing them with a powerful concept for exporting (and thus reusing) references. The main motivation
for this is the users’ well-known hesitation to give up established and well working habits, as long as there
is no perceived personal benefit.

2 Related Work

Not much work has been done so far in the area of federated referatories. However, some projects have
covered parts of what our design goals were. The MyView project [18] is similar in some ways in that it
also uses XML (in fact, it is based on SGML, but it is XML-compliant) and allows users to store custom
metadata. However, the system does not support any kind of schema definition for metadata extensions,
and it also does not support pluggable export filters.

The Greenstone architecture described by Witten et al. [17] is similar to our approach in that it is
built around the idea of processing pipelines for importing documents and metadata. However, the system
does not use the same approach for the export side, and also does not provide users with the ability to
create their own schemas. In the Greenstone system, a wide variety of data can be imported due to the
flexible plugin approach, but since there is no fixed digital library system behind it, it is impossible to
make any statements about the schema language for metadata.

The Federated Libraries on the Web (FLOW) project by Gold et al. [10] is still in an early stage,
but has the same focus as our system. It aims at creating an infrastructure which can be used to gather,

2

share, and discover metadata in research environments. It is based on an existing system, the CERN
Document Server (CDS), and will add support for the different layers of the FLOW architecture.

What we believe to be unique in our system is the definition of a dedicated schema language for schema
extensions (described in Section 3), which is provided at the user level, so that every user may install
schema extensions and then store data according to this schema. Another unique feature is the ability to
install pluggable export filters (described in Section 4.2), which also are provided at the user level and
make it easy to adapt the export format to the very different needs of heterogeneous user communities.

3 BibSchema Design

The core part of the system is the schema design for the referatory data that the system accepts and is
able to handle. A first attempt towards such a schema has been based on DTDs and had some serious
limitations in its support for datatypes and the extensibility of the schema [13]. To support a more flexible
approach, DTDs are not the appropriate schema language foundation.

In order to overcome the limitations with regards to datatype support, the decision was made to
build the next version of the schema language on top of XML Schema [14, 3] instead of DTDs. This
solution solves the problem of datatype support, but does not help much in the area of “co-constraints”,
i.e. dependencies between different parts of the XML document, which are a central part of the way
constraints are defined for entries. For this kind of schema information, the Schematron [8] language is
ideally suited, which is a rather simple language for defining rule-based schemas, where the rules’ central
part are XPath [6] expressions.

The open question remained how to support the extensibility of the schema, so that users may easily
define schema extensions. It seemed awkward to have users define an XML Schema and a Schematron
part for each extension, and it also would have been very complex to check and guarantee the consistency
of these distinct parts. Consequently, we designed a specialized schema language, which is used to define
the core schema of our system as well as any extension to it. The schema language has been based on
two major design considerations:

• Extensibility: The main goal of the system design is that users should be allowed to extend the
schema and use these schema extensions to import any data they are interested in. Since users should
not be restricted in their choice of extensions, the extension mechanism must support arbitrary
extensions while maintaining the structural integrity of the referatory.

• Mapping to Schema Languages: XML schema languages2 are evolving constantly. While XML
Schema will probably have some level of success, newer approaches such as Document Schema
Definition Languages (DSDL) [9] demonstrate that there must not be the “one size fits all” schema
language. Instead, schemas may be composed out of different schema languages, specializing in
different facets of schema definition facilities.

Continuing this argument, it may make a lot of sense to define a specialized schema language
for an application area, which is tailored to the needs of this application. Furthermore, to make
implementation of this specialized schema language easier, one possible approach is to map it to
a set of schema languages which are sufficient (or almost sufficient) to implement the specialized
schema, so that only a minimal amount of code has to be produced and maintained.

2Whenever we refer to “XML Schema” (with a capital ‘S’), we refer to the schema language defined by the W3C. When
speaking of an “XML schema language” (with a lowercase ‘s’), we refer to the generic concept of a language for defining
constraints for XML documents.

3

Import Check

BibSchema Referatory

BibSchema Schema

XML
Schema Schematron

RDBMSXML Schema
Schema

Schematron
Schema

based on

based on

based on

XSLT

Im
po

rt

(possibly multiple)

XML Schema/Schematron Base Schema

PHP-based processing
(DOM/XSLT/SQL)

based on based on

Type
System

and
Storage

based on

ba
se

d
on

ba
se

d
on

Figure 2: BibSchema Dependencies and Processing

In Figure 2, the overall design of the schema language that we developed and its dependencies are
shown (shaded components are existing technologies that we used). The schema language is called Bib-
Schema, and it is based on an XML Schema and a Schematron schema.

On the left side of the figure, the various layers of the schema languages can be seen. At the second
layer from the bottom, it is shown that the schema for our BibSchema language, shown one layer above,
is based on XML Schema and Schematron. Any BibSchema, shown at the top level, is based on our
BibSchema schema. A BibSchema document defines a schema for entries in our system, using the BibTEX
metaphors of entries which are composed using fields. Since fields may contain complex XML content,
the BibSchema may define this content directly using XML Schema. BibSchemas may also be based on
other BibSchemas, for example reusing fields from them. At the very bottom, the base schema is shown,
which defines the basic datatypes that BibSchemas build on.

While the left side of the figure shows the schema side, the middle part shows the way of how data is
checked to conform to the BibSchema(s) to which it claims to conform. The details of the implementation
are described in Section 5, but here it is important to note that the schema information is used while
importing the data into the system, so that the actual storage only contains BibSchema-valid data.

This is what the right side is showing: A referatory (a single reference or a large collection of references,
for example an XML-encoded BibTEX document) is imported into the system by looking at the schema(s)
it is using, and then checking the data when importing it. Again, details of the implementation of this
process can be found in Section 5.

Within the architecture, there are two special schemas, one is the base schema (shown at the very
bottom of Figure 2), defining the basic datatypes supported by the system, such as persons, cross-
references between entries, a macro mechanism, and treatment of special text (such as text that must
be treated differently depending on the output format3). The other special schema is the standard
BibSchema, which defines the standard entry and field types of BibTEX. The standard schema is not
shown separately in the figure and can be regarded as one of the BibSchemas shown in the upper left
corner.

3For example, when exporting the reference to [11] for TEX processing, it would be good to have the BibTEX part of the
title as “B{\sc ib}\TeX{}”, while in other formats it would probably be sufficient to get it as “BibTeX”.

4

<bs:schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:bs="http://dret.net/xmlns/bibtexml/bibschema"
defaultRefAndTargetNS="http://dret.net/xmlns/bibtexml/standard">

<bs:entry name="misc">
<bs:minOne>
<bs:field ref="author"/>
<bs:field ref="title"/>
<bs:field ref="howpublished"/>
<bs:field ref="month"/>
<bs:field ref="year"/>
<bs:field ref="note"/>
</bs:minOne>

</bs:entry>
<bs:field name="author" isPerson="true" repeatable="true"/>
<bs:field name="title" isSpecialText="true"/>
<bs:field name="month">
<restriction base="string">
<enumeration value="January"/> ...

Figure 3: BibSchema Example (Schema for misc Entry type)

To illustrate the dependencies among various components of the architecture, Figure 3 shows a very
short excerpt from the BibSchema standard schema. In this example, there are a number of interesting
things to note. One thing is that our approach is entirely based on XML Namespaces [5], identifying all
BibSchemas on the basis of namespace names. The outline of the BibSchema language can be seen by
the hierarchy of the element schema, the element entry (used to define an entry type), and the element
field (used to define a field type). As shown in the example of the month field type, a field definition
may contain normal XML Schema code.

Fields may also have qualifiers, which are either indicators for schema properties (repeatable), or
require special treatment when processing these fields (isPerson and isSpecialText). Apart from these
hard-coded properties of how fields may occur, and how fields are processed, everything in our system
architecture is freely configurable (and thus could be easily modified to have a less BibTEX-based data
model as the standard schema).

Building on base and standard schemas, users can define arbitrary extension schemas. One such
schema is shown in Figure 4. This example is a very simple extension, only defining one new field type
(topic). Since we are following BibTEX’s convention that fields may always appear in entries (i.e., there
is no such thing as an illegal field in an entry), this new field may be used in any entry type available
through other BibSchemas. The field itself is defined to contain an XML Schema complex type, in this
case a sequence of topic elements, which must carry a name as well as a weight attribute. The content
of the field element is regular XML Schema code, and thus enables users to define arbitrarily complex
field content.

This example extension schema concludes the discussion of the BibSchema design. Figure 5 shows
how an instance of this example schema looks like, and Section 5 discusses the implementation of the
schema architecture in our prototype system.

5

<bs:schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:bs="http://dret.net/xmlns/bibtexml/bibschema"
defaultRefAndTargetNS="http://dret.net/xmlns/bibtexml/topic">

<bs:field name="topics">
<sequence>
<element name="topic" maxOccurs="unbounded">
<complexType>
<attribute name="name" type="NCName"/>
<attribute name="weight">
<simpleType>
<restriction base="decimal">
<minInclusive value="0"/>
<maxInclusive value="1"/>
<fractionDigits value="1"/>
</restriction>

</simpleType>
</attribute>
</complexType>
</element>
</sequence>

</bs:field>
</bs:schema>

Figure 4: BibSchema Extension Example (topic BibSchema)

4 Handling Data

The preceding section describes how schema design is supported. It is based on the assumption that
there should be a general structure of the referatory (represented by the base and standard schemas),
and that users should have the opportunity to extend this structure according to their specific needs. To
demonstrate this, in Figure 5 it is shown how the initial example of a BibTEX entry with proprietary
fields (as shown in Figure 1) can be encoded in XML.

The most interesting part of this example is the bibliography element, which carries four namespace
declarations. These namespace declarations refer to the base and standard schemas (provided by the
system itself, the relevant part of the standard BibSchema is shown in Figure 3), the topic BibSchema
(as presented in the previous section in Figure 4), and a hypothetical uri BibSchema, defining a field
type for containing URIs.

The example shows that the entry (represented by the misc element) comes from the standard Bib-
Schema and contains a number of fields (the misc element’s child elements). Most of the fields come from
the standard BibSchema. Here it is interesting to note that the author elements contain child elements
from the base BibSchema. The reason is that the author field is defined as containing person information
(as can be seen in Figure 3). The uri field comes from a URI BibSchema (which is not discussed in this
paper), and the topics field comes from the topic BibSchema (as shown in Figure 4).

6

<b:bibliography xmlns:b="http://dret.net/xmlns/bibtexml/base"
xmlns:s="http://dret.net/xmlns/bibtexml/standard"
xmlns:t="http://dret.net/xmlns/bibtexml/topic"
xmlns:u="http://dret.net/xmlns/bibtexml/uri">

<b:entries>
<s:misc key="xmlns10">
<s:author>
<b:bibperson>
<b:firstname>Tim</b:firstname><b:lastname>Bray</b:lastname>
</b:bibperson>
</s:author>
<s:author>
<b:bibperson>
<b:firstname>Dave</b:firstname><b:lastname>Hollander</b:lastname>
</b:bibperson>
</s:author>
<s:author>
<b:bibperson>
<b:firstname>Andrew</b:firstname><b:lastname>Layman</b:lastname>
</b:bibperson>
</s:author>
<s:title>Namespaces in XML</s:title>
<s:howpublished>W3C, REC-xml-names-19990114</s:howpublished>
<s:month>January</s:month>
<s:year>1999</s:year>
<u:uri>http://www.w3.org/TR/1999/REC-xml-names-19990114</u:uri>
<t:topics>
<t:topic name="xml" weight="0.8"/>
<t:topic name="xmlns" weight="1"/>
</t:topics>
</s:misc>

</b:entries>
</b:bibliography>

Figure 5: XML-encoded Example from Figure 1

4.1 Importing References

Importing references requires them to be in the appropriate XML format, and also requires that all
BibSchemas referenced in the XML are known to the system. If an XML document references unknown
BibSchemas, it is rejected. It is then necessary to install the BibSchema in the system (through a
special management interface), after this installation the system will accept the XML document. Before
actually importing the references, the XML to be imported is validated against the base schema and any
BibSchema(s) it is using. This validation uses code which has been generated from the BibSchema at
installation time through XSLT (as shown in Figure 2).

7

This design makes the system dynamically adaptive to new BibSchemas. Whenever a user wants to
manage references with the system that are not supported by the installed BibSchemas, it is possible to
write a new BibSchema (e.g., like the topic BibSchema shown in Figure 4), install it, and then import
data using this BibSchema. Since BibSchema extensions can define arbitrary XML Schema structures for
fields, practically all metadata that can be encoded in XML can be managed by our system.

4.2 Exporting References

Exporting references is done by first selecting them through a search interface, and then export them.
Since the system’s design goal was to adapt to the needs of different users, it supports a very flexible way
of exporting references: they can either be referenced in the XML notation shown in Figure 5, or they
can be processed by one or more XSLT programs to fit the needs of different users. The system currently
supports BibTEX output (by implementing an XSLT generating BibTEX code from BibSchema XML),
but it would be trivial to write XSLT code for transforming BibSchema XML to other formats, such as
Dublin Core (DC) [16], the Open Archives Initiative (OAI) [15], or some RDF-based metadata format.

In the same way as BibSchemas must be installed in the system to handle XML using these Bib-
Schemas, XSLTs can be installed to extend the system to generate new output formats. Both types of
plugins (BibSchemas an XSLTs) may only be installed by users with special rights, to avoid an uncon-
trolled growth of BibSchemas and XSLTs in the system.

5 Implementation

The current prototype implementation of the system is based on the popular LAMP (Linux, Apache,
MySQL, PHP) set of tools (with the exception that it is currently running under Windows, but since
there are no Windows-specific parts in it, porting it to another platform such as Linux is trivial). The
implementation design is based on the schema design and import and export processes described in the
previous section.

Because a BibSchema is used to generate an XML Schema, it is necessary to use an XML Schema
processor as part of the import process. After testing a number of XML Schema processors, Apache’s
Xerces was chosen because it implemented the biggest subset of XML Schema. Sadly, there doesn’t seem
to be a single XML Schema processor available that implements the full specification (even though there
are a number who claim to do so), so finding and picking the right one took some time.

A BibSchema is also used to generate a Schematron schema, which is executed using an XSLT pro-
cessor. After first using the Sablotron XSLT processor built into PHP, it became clear that it contains
some errors, and the implementation now uses the Saxon XSLT processor.

The relational database we are using is MySQL, which is used to store the data after the import
checking has been successful. Since MySQL does not support XML, we store fields containing XML as
character data. This means that it is possible to search for XML in fields on a text basis, but it is not
possible to perform any structure-oriented queries on this content.

6 Further Work

In the following list, we list some of the issues that we think would be interesting to investigate in more
detail. Generally, we regard our work as a starting point to think about federated schemas and federated

8

referatories and ways to support users in such a scenario, but we also believe that more research should
be performed in this area.

• BibSchema Classification and Cataloguing: Currently no attempt is made to prevent users from
reinventing the wheel by defining multiple schemas for the same purpose. The problem of classi-
fying and cataloguing existing schemas, so that users reuse existing schemas and thus increase the
usefulness of the referatory, is not an easy one. Our current (admittedly simple) way to deal with
this problem is to restrict schema installation to system managers, which are expected to check the
schemas manually and thus prevent the emergence of redundant schemas.

• Import Optimization: Importing large amounts of records into our system currently is not performing
very well, due to our design of the import process (as described in Section 4.1). To speed up the
import process, it would be possible to perform various optimizations. In a first step, it would be
possible to use compiled XSLT (Schematron validation uses XSLT, which could be pre-compiled).
Going further, it would be possible to write custom validation code in a regular programming
language. However, since validation must be open to extension by new schemas, this would be a
rather complex task.

• Pluggable Import Filters: In the same way as the system now supports pluggable export filters, it
would be possible to support pluggable import filters, so that users can install such an import filter,
and then import any kind of import data4, which as part of the import process is then transformed
into the XML format required for internal storage.

• XML Database Support: The system as it is implemented now is based on a relational database,
which brings with it all the problems of an XML-based data model stored in a relational database [1].
It would be an interesting task to move the system to an XML database, which in particular would be
interesting if the BibSchema extensions included complex XML structures that should be accessible
via queries. Which directly leads to the next point:

• XML Query Language (XQuery): Currently, the system accepts queries via a Web interface and
maps them to SQL queries. This is sufficient as long as queries are targeted at field level. However,
if queries need to recognize field structures, then it would be very useful to have a query language
specialized for XML queries, such as XQuery [4]. XQuery support would imply an underlying
database supporting it, and the question whether this would be worth the effort highly depends on
the kind of BibSchema extensions (and in particular, features to query that data) that should be
supported. Looking at the current design of the system, this could also involve the following:

• BibSchema Query Language: In the same way as the system currently has its own schema language
(which is mapped to XML standard technologies), the system could be extended to have its own
query language, which would be specifically designed to support BibSchema with its extension
mechanism, and possibly XQuery-style queries into BibSchema extensions. Which leads to the last
and most complex way to extend the system architecture:

• Distributed Query Processing: If both schemas and queries use their own language, then it would
be possible to extend the system architecture to support distributed queries. This would take the
notion of a federated referatory to a new level, where distributed referatories cooperate to increase

4Depending on the support of import filters, this could either be any kind of XML (if only XSLT would be accepted), or
any kind of text-based data (if a text-processing language such as Perl would be supported, too).

9

the amount of metadata accessible to users. The move towards distributed query processing certainly
would be challenging, but it would be possible to benefit from the wealth of knowledge gathered by
the federated databases community.

This list is non-exhaustive, but it should be sufficient to illustrate the direction we are envisioning for
our system and future research in this area.

7 Conclusions

The system described in this paper is a first approach towards federated referatories. It also is an exercise
in using different XML technologies for shortening the development effort required for prototypes. Most
of the implementation effort for our system went into choosing and integrating the XML technologies that
we used (most notably, DOM, XML Schema, Schematron, and XSLT).

8 Acknowledgements

Philip Schaffhauser and Felix Hauser implemented the prototype for the system described in this paper.
A detailed report of their work ins available in their diploma thesis [7].

References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco, California, October
1999.

[2] Maristella Agosti and Constantino Thanos, editors. Research and Advanced Technology
for Digital Technology: Proceedings of the 6th European Conference on Digital Libraries, volume
2458 of Lecture Notes in Computer Science, Rome, Italy, September 2002. Springer-Verlag.

[3] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. World Wide Web
Consortium, Recommendation REC-xmlschema-2-20010502, May 2001.

[4] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An XML Query Language. World Wide Web Consortium,
Working Draft WD-xquery-20030502, May 2003.

[5] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. World Wide Web
Consortium, Recommendation REC-xml-names-19990114, January 1999.

[6] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0. World Wide
Web Consortium, Recommendation REC-xpath-19991116, November 1999.

[7] Felix Hauser and Philip Schaffhauser. Database-Driven XML-Enabled Bibliography Man-
agement System. Master’s thesis, Computer Engineering and Networks Laboratory, Swiss Federal
Institute of Technology, Zürich, Switzerland, March 2003.

10

[8] International Organization for Standardization. Information Technology — Document
Schema Definition Languages (DSDL) — Part 3: Rule-based validation — Schematron. to be
published as ISO/IEC 19757-3.

[9] International Organization for Standardization. Information Technology — Document
Schema Definition Languages (DSDL). to be published as ISO/IEC 19757.

[10] Anna Keller Gold, Karen S. Baker, Jean-Yves LeMeur, and Kim Baldridge. Building
FLOW: Federating Libraries on the Web. In Gary Marchionini, editor, Proceedings of the
Second ACM/IEEE-CS Joint Conference on Digital Libraries, pages 287–288, Portland, Oregon,
July 2002. ACM Press.

[11] Oren Patashnik. BibTEXing. Technical report, February 1988.

[12] Oren Patashnik. Designing BibTEX Styles. Technical report, February 1988.

[13] Luca Previtali, Brenno Lurati, and Erik Wilde. BibTEXML: An XML Representation of
BibTEX. In Poster Proceedings of the Tenth International World Wide Web Conference, pages
64–65, Hong Kong, May 2001. ACM Press.

[14] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. World Wide Web Consortium, Recommendation REC-xmlschema-1-
20010502, May 2001.

[15] Herbert Van de Sompel and Carl Lagoze. Notes from the Interoperability Front: A Progress
Report on the Open Archives Initiative. In Agosti and Thanos [2], pages 144–157.

[16] Stuart L. Weibel, John A. Kunze, Carl Lagoze, and Misha Wolf. Dublin Core Metadata
for Resource Discovery. Internet informational RFC 2413, September 1998.

[17] Ian H. Witten, David Bainbridge, Gordon Paynter, and Stefan Boddie. Importing
Documents and Metadata into Digital Libraries: Requirements Analysis and an Extensible Archi-
tecture. In Agosti and Thanos [2], pages 390–405.

[18] Jens E. Wolff and Armin B. Cremers. The MyView Project: A Data Warehousing Approach
to Personalized Digital Libraries. In Ron Y. Pinter and Shalom Tsur, editors, Proceedings
of Fourth International Workshop on Next Generation Information Technologies and Systems,
volume 1649 of Lecture Notes in Computer Science, pages 277–294, Zikhron-Yaakov, Israel, July
1999. Springer-Verlag.

11

	Introduction
	Related Work
	BibSchema Design
	Handling Data
	Importing References
	Exporting References

	Implementation
	Further Work
	Conclusions
	Acknowledgements

